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Abstract 

 

Molten Oxide Electrolysis (MOE) is a promising and laboratory-proven in-situ resource 

utilization technology for generating oxygen from lunar regolith simulant.  Prior to this work, 

iridium metal was the only demonstrated suitable inert anode material, but its use had been 

limited to laboratory-scale testing owing to its extraordinarily high density, hardness, and cost.  

In the current work, electrodes fabricated from 50:50 (wt%) iridium-tungsten alloy were shown 

to be functional inert anodes for molten oxide electrolysis.  The performance of the iridium-

tungsten alloy was compared with that of pure iridium in a series of constant current electrolysis 

experiments under a variety of conditions, including the use of different electrolytes, cathodes, 

currents, and experiment durations.  The iridium-tungsten alloy was also examined post-run by 

scanning electron microscopy and electron dispersive spectroscopy to determine its durability in 

the electrolyte, and to perform a preliminary survey of the nature of diffusion in Ir-M systems in 

support of potential development of Ir-based anode systems. 

Introduction 

In recent years, in-situ resource utilization (ISRU) – namely, ‘living off the land’ – has become 

the driving paradigm behind the economically viable establishment of a permanent human 

presence on the moon.  Molten oxide electrolysis (MOE) using an inert anode is a leading 

candidate technology for ISRU on the moon or other predominantly hydrate-free planetary 

bodies because it can use un-beneficiated lunar regolith as feedstock to produce oxygen and 

useful metals, such as iron and silicon [1]. At the same time, it is important to note that inert 

anodes developed for MOE have potential significant applications on earth as well. 

It has long been asserted that inert anodes for high-temperature electrolysis have significant 

advantages over consumable carbon anodes and would have broad applications to both 

established industries, such as aluminum, and to processes currently under development, 

including those for electrolytic production of titanium and iron [2-4].  Use of an inert anode 

would: 1) eliminate the emission of greenhouse gases such as CO, CO2, and perfluorocarbons, 2) 
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reduce process cost and downtime by eliminating periodic anode fabrication and installation [3], 

3) prevent potential contamination of a metal product by carbon dissolved from the anode, and 4) 

improve the theoretical energy efficiency of an electrolytic cell [5]. 

However, significant materials challenges have slowed the search for viable inert anode 

candidates.  Very few single materials possess the combination of electronic conductivity, high 

melting point, mechanical stability, and extreme corrosion resistance to oxygen and molten 

oxides required of an inert anode [6-7]. Although some Cu-Ni alloys [8] and certain novel 

metallic ceramics [9] have shown potential at lower operating temperatures, prior to the present 

work, the only demonstrated inert anode material for MOE at the high temperatures (>1650°C) 

required by lunar regolith was pure iridium metal [10]. 

Unfortunately, bulk iridium is inherently limited as an engineering solution by its extreme 

scarcity (~0.4 ppb in the Earth’s crust), high cost of processing, and limited fabrication methods 

due to its extreme hardness.  For spaceflight applications, iridium is further limited by its 

extraordinarily high density (~22.6 g cm
-3

).  Ultimately, it may be possible to develop a surface-

engineered anode system, which uses a thin iridium coating as an active surface on a cheaper, 

lighter substrate.  However, in preparation for such an endeavor, increased knowledge of 

iridium-based systems and the interfaces between iridium and other materials must be obtained. 

Thus, the primary focus of this work was to use an iridium-tungsten alloy as an inert anode in a 

MOE reactor.  A series of constant-current electrolysis experiments were performed to examine 

the alloy on its own merits as an inert anode and to generate important background knowledge on 

the physical properties of iridium-metal systems, in particular, interdiffusion at Ir/M interfaces. 

Selection of Iridium-Tungsten 

A number of Ir-M alloys were considered for fabrication and study, where the alloying element 

M came from the following groups:  1) platinum group metals (Ir, Pt, Rh), 2) high-melting/low-

density metals (Ti, Zr, Hf, and Cr), and 3) refractory metals (W, Mo, Nb, Ta). 

Other platinum group metals were rejected as candidates because they are also costly and dense, 

offering no apparent benefits over pure iridium.  Alloys of iridium and high-melting/low-density 

metals were also unsuitable, because the minimum melting point over relevant composition 

ranges of each of the alloys was lower than the expected operating temperature of the cell. 

Thus, the only remaining candidates were alloys of iridium and refractory metals.  Due to time 

and resource limitations, only one of these alloys could be fabricated and tested.  Based on 

tabulated data, the system with the highest minimum melting point, iridium-tungsten, was 

selected as a best-case technical solution.  Since tungsten was expected to oxidize from the 

surface of the electrode during electrolysis, the highest melting point suggested the slowest rate 

of tungsten depletion, which would allow the extended testing of the material as an inert anode, 

and easy observation of time-dependent iridium/tungsten inter-diffusion. 

Constant-Current Electrolysis Experiments 

A total of six constant current experiments was conducted to determine the performance of the 

iridium-tungsten alloy relative to a baseline of pure iridium in two different melt compositions.  
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Figure 2 – Schematic of 

furnace setup and geometry.   

Figure 1 – A) Typical Ir or 

Ir-W cylindrical anode, B) 

Mo plate cathode. 

The first question was whether an Ir-W alloy could serve as an inert anode for molten oxide 

electrolysis.  If that could be demonstrated, then of particular interest were the oxygen generating 

capabilities of Ir-W vis-à-vis pure iridium and the extent and nature of the physical and chemical 

changes occurring to the alloy under conditions of electrolysis.  

Experimental Setup 

Electrodes: Pure iridium and 50:50 (wt%) iridium-tungsten anodes were purchased from the 

Furuya Metal Co., Ltd., Tokyo, Japan which fabricated them using a powder metallurgy process 

of mixing, pressing, and sintering.  Each anode was a solid metal cylinder, diameter of 15mm 

and a height of 20mm, drilled axially and connected to a long molybdenum rod electrode lead.  

After receipt from the manufacturer, the lead rods were 

dielectrically sheathed with alumina tubes and hi-purity 

alumina cement to protect the electrode leads from oxidation 

and mechanical damage (Figure 1A). 

Since the iridium cathodes used in the first two runs proved to 

be too fragile, later runs used a custom-fabricated molybdenum 

plate cathode, which was produced by heating a molybdenum 

lead rod with a propane torch, and then bending the rods 

securely around a 30!40!0.7mm plate (Figure 1B). 

Electrolyte: JSC-1A, a standard NASA lunar simulant, 

obtained from Orbitec™, was used in two of the runs.  

However, as demonstrated in this and previous work, oxygen 

detection by gas chromatography is challenging due to 

parasitic back-reactions of electrolyte components.  Thus, a 

Simplified-Composition Lunar Simulant (SCLS) was 

developed to allow easier comparison of Ir and Ir-W oxygen 

generating performance.  SCLS was based on JSC-1A, with 

minor constituents (< 3 wt%) removed and all Fe2O3 replaced 

by an equivalent quantity of FeO (lunar regolith is Fe2O3-

free). 

Furnace Set-Up:  A Mellen CD18 tube furnace with MoSi2 

elements was used for these experiments.  The molten 

electrolyte was contained with a nested series of two crucibles 

and two furnace tubes and the entire apparatus was sealed 

from atmosphere by a custom-fabricated stainless steel cap.  

A schematic is shown in Figure 2.  The electrodes were fitted 

through dielectric vacuum fittings in the cap and current was 

furnished by an Argantix 10kW DC power supply.  All 

experiments were run at or near a cell temperature of 1575°C 

and under a constant flow of ultra high purity helium 

(600 mL/min), used as received from Airgas. 

A 

B 
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Instrumentation: During the experiments, data were collected and recorded by a central 

computer.  The composition of the furnace gas was regularly sampled by a Varian GC-4900 

micro gas chromatograph; these data were correlated to electrochemical, and furnace 

performance data.  In some runs, it was also possible to quantify O2 production by comparing gas 

inflow and outflow. 

The progress of electrolysis was also observed visually through a borosilicate viewing port in the 

cell cap; several still photographs and videos of electrolysis were recorded using a handheld 

digital camera. 

Electrolysis 

Three experiments using pure Ir electrodes were run to validate the experimental setup and 

provide a baseline for comparison of the runs using Ir-W under similar conditions.  Next, three 

similar constant-current experiments were conducted using the cylindrical iridium-tungsten 

electrodes with the goal of running electrolysis for a variety of time-periods, including long 

durations of six or more hours. 

In each of the six experiments, one or more current targets between 5A and 10A were set, with 

no attempt made to limit the voltage required to pass the target current.  Only when the current 

could not be passed at the 30V maximum of the power supply was a below-target current used. 

During electrolysis, the composition of the gas stream was measured every 2.5 minutes.  The 

theoretical oxygen content of a 600 mL/min gas stream was calculated based on the instant 

current flowing through the cell.  This theoretical value was compared to the measured oxygen 

content and used to calculate a current efficiency for the system.  The measured rate was also 

integrated to determine the total quantity of oxygen produced in each experiment. 

Post-Experiment Characterization 

The iridium-tungsten anodes were sectioned using electric discharge machining and mounted in 

a hot isostatically pressed black resin.  The samples were polished with increasingly fine grades 

of silicon carbide sandpaper and then examined using a scanning electron microscope, equipped 

with a backscatter electron detector, variable pressure capability, and an electron dispersive 

spectrometer.  Micrographs of the samples were taken, as were a number of concentration 

profiles of iridium and tungsten from the surface of the electrode inwards. 

Results and Discussion 

A summary with the setup and results of each experiment in this series is provided in Figure 3. 

Run Duration 

The goal of running extended-duration electrolysis near 6 hours was met in only one of the six 

experiments.  In the first two runs, the iridium cathode failed early, an issue which was resolved 

by the introduction of a more robust molybdenum cathode.  In the other four runs, electrolysis 

was ended by actual or imminent failure of the inner crucible, resulting from contact with the 
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Figure 3 – Experimental matrix for series of runs.  NOTES: 1) This run was aborted before 

any results were obtained; 2) SCLS = Simplified-Composition Lunar Simulant; 3) Very limited 

oxygen was detected by GC even after a long-duration run even though significant bubble evolution 

was observed.  Parasitic oxygen-consuming reactions among components of JSC-1a are suspected; 4) 

Reliable current efficiency data from this run are not available due to prolonged exposure of hot 

molybdenum to the gas stream. 

extremely corrosive electrolyte.  From these runs, it appears that durability of the Ir-W alloy 

anode is not currently the limiting factor for longer-duration runs of an MOE system. 

  

 

Anode Performance and Current Efficiency 

Under nominal operating conditions, current efficiencies of pure iridium anodes were quite high, 

well in excess of 75% in the two successful iridium runs.  Results also suggested that current 

efficiencies increased with increasing current.  However, pure iridium anodes tended to show a 

gradual drop in current efficiency with time, which is likely related to the development of a 

chemical short circuit involving multivalent ionic species, most notably Fe
2+

 and Fe
3+

.  It is also 

worth noting that the introduction of a molybdenum cathode, a potent oxygen getter at high 

temperatures, can severely harm current efficiencies if the metal becomes exposed to the gas 

stream as was the case in the NASA5 run (Figure 1, Footnote 4). 

The experiments involving Ir-W demonstrated that upon depletion of tungsten at the electrode 

surface, iridium-tungsten is an inert anode material capable of generating significant quantities of 

oxygen by MOE.  However, over the course of the experimental series, three main points 

differentiated the electrochemical performance of the two electrode materials: 

1) Ir-W anodes tend to evolve oxygen at lower current efficiencies than seen with 

pure Ir anodes.  The best estimates available from these runs suggest that in SCLS 

pure Ir is around 80-90% efficient (at the peak), while Ir-W is around 45-55% 

efficient.  Presumably, some quantity of oxygen is being consumed by the 

oxidation of tungsten from the alloy anode surface.  
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2) Ir-W anodes must spend a period of time immersed in the electrolyte before 

their full current-passing capability is reached.  In contrast, iridium electrodes can 

pass full current immediately. This ‘delay’ effect is likely related to the kinetics of 

tungsten depletion from the anode surface. 

3) At least on the timeframes accessed by these experiments, Ir-W did not show 

the gradual drop in current efficiency seen with pure Ir anodes.   

 

Alloy Performance and Iridium-Tungsten Interdiffusion 

The iridium-tungsten anodes used for this analysis were used for electrolysis lasting 83 and 125 

minutes (short-duration) and 352 minutes (long-duration).  In these runs of less than six hours, 

no noticeable change in size or mass was noted in any of the iridium-tungsten anodes.  

Additionally, there was no decline in the oxygen generating performance over these run 

durations.  However, each of the electrodes had entirely lost their original metallic sheen, 

suggesting that the expected surface tungsten depletion had occurred.   

As expected, SEM and EDS analysis confirmed that the surface of the Ir-W anode was depleted 

of tungsten.  In the ‘short-duration’ anodes, depletion depth was just over 500 µm.   A thin layer 

(approximately 50 µm) at the surface appears ‘broken’ and has been thoroughly penetrated by 

electrolyte.  For the long-duration anode (352 minutes), the depth of tungsten depletion was 

approximately 1140 µm while the ‘broken’ layer was around 100 µm thick.  The data from 85 

and 352 minutes scale as would be expected by the laws of classical Fickian diffusion, according 

to which the depth of depletion should scale with the square root of duration.  

A micrograph of a representative Ir-W anode cross-section, clearly shows several bands near the 

electrode surface which may correspond to the increasingly tungsten-poor phases seen on an 

iridium-tungsten phase diagram (Figure 4). 

More quantitatively, EDS elemental analysis was used to determine the iridium and tungsten 

concentration profiles near the surface of the electrodes.  Figure 5 contrasts the profiles for the 

short and long-duration electrodes.  While the short-duration profile shows an essentially smooth 

trend from surface to interior, the long duration profile shows several distinct features, and not a 

Gaussian error function as would be expected for simple diffusion.  Both sets of data correspond 

closely to a depth of around 0.5 mm, which suggest that this is a steady-state profile for this 

region.  The long-duration profile then diverges, being largely flat from a depth of 0.5 to 0.8 mm 

(over compositions from 25 to 30% tungsten) and then showing a nearly linear trend to the 

original 50-50 composition over depths of 0.8 to 1.1 mm (Figure 5).  

 

Computer modeling using Matlab’s pdepe function to solve Fick’s Second Law suggests that 

such a profile occurs when there is a region of intermediate composition with a higher diffusion 

coefficient than either extreme.  Based on this simple model, it is suggested that the diffusion 

coefficient in the intermediate composition of 25-30% tungsten is on the order of 4 ! 10
-7

 cm
2
s

-1
, 

while the diffusion coefficient on either side is about 4-5 ! 10
-8

 cm
2
 s

-1
, an order of magnitude 

lower.  In terms of future design of iridium systems, the fact that there exists an intermediate 

composition layer with a higher diffusion coefficient suggests alloy compositions that may 

improve system durability. 
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In any case, the development of depletion layers with non-trivial metallic interdiffusion 

coefficients strongly suggests that a conductive diffusion barrier, such as a tungsten carbide 

layer, would be necessary for the long-term performance of any inert anode system involving 

iridium/tungsten interfaces for molten oxide electrolysis.   

 

 

 

Conclusions 

Iridium-tungsten alloy (50-50 wt%) has been confirmed as an inert anode material for oxygen 

generation by molten oxide electrolysis.  The oxygen generating capabilities of this material are 

generally good, but still somewhat inferior to pure iridium, particularly in terms of current 

efficiency, a ‘delay’ period before maximum current, and durability in molten oxides.  SEM and 

EDS analysis generated diffusion data for various solid phases of the Ir-W system, providing 

insight into alloy compositions that may maximize the lifetime of Ir-M alloys in molten oxides.  

In the specific case of Ir-W, it was demonstrated that while the bulk material is substantially 

BB  

AA  

Figure 4 - A) SEM micrograph showing banding at surface of anode.  The arrow corresponds 

to that in Part B of this figure. B) Ir-W phase diagram with operational temperature and 

relevant compositions marked by arrow  

Figure 5 – Iridium-tungsten profiles for runs of various lengths.  The figure at left compares 

two short-duration runs with banding seen in a SEM micrograph of the anode surface.  The 

graph at right is a comparison of profiles for long and short duration runs. 
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stable over the time scales accessed (<6 h), a diffusion barrier will almost certainly required to 

ensure the long-term performance of any anode system using Ir-M interfaces.  
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